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Abstract-It is well known that when a homogeneous isotropic elastic medium is under a plane
strain deformation due to prescribed tractions at the boundary, the stress is independent of elastic
constants. In the case of a bimaterial that consists of two dissimilar isotropic materials bonded
together along their interface, the stress depends on two composite elastic constants known as
Dundurs constants. For anisotropic elastic materials, plane strain deformations are possible for
monoclinic materials with the symmetry plane at X 3 = O. For these materials, the plane strain solution
is in terms of two complex variables z, = x, +P,X2 and Z2 = XI +P2X2, where PI and P2 are complex
eigenvalues depending on elastic constants. If the boundary conditions are prescribed in terms of
tractions, it is shown that the stress is independent of elastic constants except P, and P2' In the case
of a bimaterial that consists of two dissimilar monoclinic materials bonded together along their
interface, the stress depends on two composite elastic constants (X and f3 (in addition to PI and P2 in
both materials). They reduce to Dundurs constants in the isotropic limit. The result remains valid
when the interface is not perfectly bonded. We also show that every plane strain solution to a given
anisotropic material or bimaterial is applicable to a wider class of anisotropic materials and
bimaterials. In particular, every plane strain solution to an isotropic material or bimaterial is
applicable to a class of anisotropic materials or bimaterials that may possess no material symmetry.
Finally, we show how the results obtained here can be modified for plane stress deformations.

I. INTRODUCTION

Consider a bimaterial that consists of two dissimilar homogeneous isotropic media bonded
together along their interface. The geometry of the interface can be rather arbitrary. There
are two elastic constants each in the two materials, resulting in a total of four elastic
constants. The solution for the stress depends on these four elastic constants, but they can
be reduced to three by a dimensional analysis. Dundurs (1969a,b, 1970) has proved that
the solution for the stress depends on two composite elastic constants (known as Dundurs
constants) provided:

(i) the deformation is plane strain, i.e. Ub U2 depend on Xl' X z only while U3 = 0;
(ii) the boundary conditions are prescribed in terms of tractions;

(iii) the Michell (1899) condition is satisfied, i.e. the integration of the surface tractions
on any closed curve vanishes.

Condition (i) is not possible for general anisotropic materials because the in-plane
displacement (Ui> uz) and the anti-plane displacement U3 are in general coupled. For aniso­
tropic elastic materials, the stress-strain laws and the equations of equilibrium are

(1)

(2)

in which Ui, aij are the displacement and stress, respectively, a comma denotes differentiation,
repeated indices imply summation, and Cijks are the elastic stiffnesses assumed to possess
the full symmetry. Equation (2) consists of three equations. With condition (i) the third
equation vanishes identically if
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Cl4 = CI5 = CZ4 = CZ5 = C46 = C56 = 0, (3)

where we have employed the contracted notation for Cijks (Lekhnitskii, 1950). Equation (3)
is satisfied by monoclinic materials with the symmetry plane at X3 = O. In fact eqn (3)
represents materials more general than monoclinic materials with the symmetry plane at
X3 = 0 because the latter also require that C34 = C35 = O. Since C34 and C35 are not needed
in plane strain deformations, we will consider in this paper monoclinic materials with the
symmetry plane at X3 = O. The anti-plane displacement U3 is uncoupled from (UI> uz), allowing
us to set U3 = O. Only six out of thirteen elastic constants are needed for these materials
under a plane strain deformation. This means a total of twelve elastic constants for a
monoclinic bimaterial. More discussions on decoupling of in-plane and anti-plane defor­
mations are given by Horgan and Miller (1994) and Ting (1994b).

The general solution to eqns (1) and (2) is presented in section 2. In section 3 we
specialize the solution to plane strain deformations in monoclinic materials with the sym­
metry plane at X 3= O. The general solution is a superposition of functions of complex
variables ZI = XI +PIXZ and Zz = XI +PzXz, wherePI andPz are complex eigenvalues depending
on elastic constants. The real and imaginary parts ofPI> pz account for four elastic constants.
It is shown that the solution for the stress in a homogeneous material subjected to conditions
(ii) and (iii) does not depend on elastic constants other than PI and Pz. Bimaterials that
consist of two dissimilar monoclinic materials bonded together along their interface are
considered in Section 4. If conditions (ii) and (iii) are satisfied, the solution for the stress
depends on two 2 x 2 real tensors n-1u and n-1w. We prove in Section 5 that n-1u and
n-Iw depend on two composite elastic constants IX and f3 in addition to PI> pz in the two
materials. The PI> pz in the two materials account for eight elastic constants for the
bimaterial. The IX and f3 reduce to Dundurs constants when the materials are isotropic. It is
shown in section 6 that the stress remains dependent on IX and f3 also for an interface that
may consist of cracks and/or a sliding interface with or without friction. Several special
monoclinic materials for which n-Iu and n-Iw have a simple expression are presented in
section 7. In section 8 we point out by an example that any plane strain solution to an
anisotropic elastic material or bimaterial is applicable to a wider class of anisotropic elastic
materials or bimaterials. The last section shows that the results presented can be applied to
plane stress deformations with a simple modification.

2. GENERAL SOLUTION

A general solution to eqn (2) is (Eshelby et al., 1953)

U j = aJ(z) or u = aj(z)

where

(4)

In the above, j is an arbitrary function of z, and P and aj are determined by inserting eqn
(4) into eqn (2). In m~trix notation we have

(5)

where the superscript T denotes the transpose and the 3 x 3 matrices Q, Rand Tare

(6)

The matrices Q and T are symmetric and positive definite if the strain energy is positive.
Introducing the new vector
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1
b = (RT +pT)a = --(Q+pR)a,

p

485

(7)

in which the second equality follows from eqn (5), the stress obtained from substituting
eqn (4) into eqn (1) can be written in terms of the stress function l/J as (Stroh, 1958, 1962)

ail = - ((Ji, 2, a i2 = ((Ji,l

((Ji = bJ(z) or l/J = bj(z).

(8)

(9)

It is sufficient, therefore, to consider the stress function l/J because the stress can be obtained
from eqn (8) by differentiation. Let t be the surface traction at a boundary surface. Then

where s is the arclength of the boundary (Stroh, 1958). This is reduced to eqn (8) when the
boundary is a plane parallel to the xz-axis or the xl-axis. Hence

(10)

where l/Jo is a constant vector. If the Michell condition is satisfied, the integral in eqn (10)
vanishes when the integration is taken around any complete circle.

Equation (5) provides six eigenvalues for p and six associate eigenvectors a. Since p
cannot be real if the strain energy is positive, there are three pairs of complex conjugates
for p. IfPK (K = 1,2, ... ,6) are the eigenvalues we let

where 1m stands for the imaginary part and the overbar denotes the complex conjugate.
Assuming that the PK are distinct, the general solutions obtained by superposing six solutions
of the form in eqns (4) and (9) are

3 3

U = I {aJiZK)+aK9K(zJ}, l/J = L: {bJizK)+bK9K(ZK)}'
K= 1 K= 1

whereJ:,9K(K = 1,2,3) are arbitrary functions of their arguments and

(12)

(13)

In most applications 9K= lK so that u and l/J are real. An exception is the stress singularity
analysis in whichJ: = z,~+ 1 and 9K = z~+ 1, where (j is the order of stress singularity (Wang
and Choi, 1982). If (j is not real, 9K =I- lK and u and l/J may not be real. However, if (j is a stress
singularity so is J (Ting, 1986). One can therefore superimpose two solutions associated with
(j and J to obtain real u and l/J.

It is more convenient to write eqn (12) as

u = Af(z) +Ag(z), l/J = Bf(z) +Bg(z),

where A and Bare 3 x 3 complex matrices given by

and

(14)
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When the vectors aa, ba are properly normalized, the three Barnett-Lothe tensors S, H, L,
defined by

(15)

are real (Barnett and Lothe, 1973; Chadwick and Smith, 1977). Hand L are symmetric
and positive definite, while SL -1 and H-'S are skew-symmetric. The impedance tensor M
and its inverse, defined by (Ingebrigtsen and Tonning, 1969)

are positive definite Hermitian. With eqn (16), we write eqn (14) as

D = -iM-Iv(z)+iM-Iw(z), t/J = v(z) + w(z),

where

v(z) = Bf(z), w(z) = Bg(z).

(17)

(18)

3. MONOCLINIC MATERIALS WITH THE SYMMETRY PLANE AT x 3 = 0

For monoclinic materials with the symmetry plane at X3 = 0, the matrices A, Band
M- I in eqns (14) and (17) have the structure (Suo, 1990; Ting, 1992a)

[~
*
*o

where the * denotes a possibly nonzero element. By setting 13(Z3) = g3(Z3) = 0, U3 and ({J3

vanish identically. We therefore have a plane strain deformation. The third rows and third
columns of A, Band M- ' in eqns (14) and (17) can be deleted, and A, Band M- ' are
reduced to 2 x 2 matrices. D, t/J, v and ware 2 x 1 column matrices. The general solution
given by eqn (17) is in terms of two complex variables, Zl = XI +PIX2 and Z2 = XI +P2X2'

The eigenvalues PI and P2 for monoclinic materials with the symmetry plane at X3 = 0
can be obtained from eqn (5). An alternate equation is (Lekhnitskii, 1950)

(19)

in which sij are the reduced elastic compliances

(20)

and Sij are the elastic compliances. They are related to the elastic stiffnesses Cij by

where bik is the Kronecker delta. P" P2 are the roots of eqn (19) with positive imaginary
parts. Explicit expressions of A and B are (Suo, 1990; Ting, 1992a)
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-pz]
1 '

(21)

in which

The columns of A and B must be normalized according to

in computing S, H, and Lin eqn (15). Normalization is not required for the general solution
(14), the impedance tensor M and its inverse M- 1 in eqn (16) [see Ting (1992a)], and the
general solution (17).

From eqns (19) and (21), the matrix A depends on the six elastic compliances s~ b s~z,

s;z, S~6' S;6' and S~6' However B depends on PI' pz only. If the boundary conditions are
prescribed in terms of tractions and the Michell condition is satisfied, t/J at the boundary,
determined from eqn (10), is single-valued and is independent of elastic constants. Conse­
quently, the unknown functions v(z) and w(z) in eqn (17)z, determined by the boundary
conditions, do not depend on elastic constants. We conclude, therefore, that when the
boundary conditions are prescribed in terms of tractions and the Michell condition is
satisfied, the stress does not depend on elastic constants other than PI and Pz. For isotropic
materials PI = pz = i and, as expected, the stress does not depend on elastic constants for
plane strain deformations of isotropic materials when the boundary conditions are pre­
scribed in terms of tractions.

It should be noted that the boundary conditions for a concentrated force are excluded
because they are not prescribed entirely in terms of tractions. The displacement must
be single-valued when one goes around the concentrated force one complete circle. A
concentrated force does not satisfy the Michell condition. It demands that t/J, and hence v
and w, be multi-valued. This implies that the displacement n, obtained from eqn (17)1' may
be multi-valued, requiring the imposition of continuity of displacement. The dependence
on elastic constants ofisotropic materials when the Michell condition is violated was studied
by Dundurs (1967a).

4. MONOCLINIC BIMATERIALS

Consider now a bimaterial that consists of two dissimilar monoclinic materials. Let
the solution be

(22)

for material 1 and

(23)

for material 2. The continuity of displacement and traction at the interface means that, by
eqn (10),

When condition (iii) is satisfied, t/JI and t/Jz are single-valued. We may set t/Jy = t/J'2. Sub­
stitution of eqns (22) and (23) into the above leads to
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(24)

For simplicity we have omitted the arguments of Vb V2, WI, W2' Equations (24) are the
continuity conditions at the interface in which elastic constants appear in eqn (24)1 through
M I and M2. With the external load prescribed in terms of tractions, (24)1 is the only place
elastic constants enter into the unknown functions Vm W n (n = 1,2). Dependence on
p\n),p~) (n = 1,2) is understood.

Inserting W2from eqn (24)2 into eqn (24)1 we obtain

From eqns (16)3,4 this can be written as

(D-iW)vI-(U+iW)wI = (D-U)v2

or

(25)

In the above

(26)

are tensors. Premultiplied by D- I, eqn (25) takes the form

(27)

We arrive at the result that the solution for the stress depends on the two 2 x 2 real tensors

(28)

In the next section we show that D-1U and D-IW depend on two composite elastic
constants rt. and f3 in addition to p\n), p~) (n = 1,2).

It should be noted that when WI = V2 at the interface, eqn (27) shows that the stress
solution depends on D-IW only. This is the case for an interface crack in a bimaterial
subjected to prescribed tractions on the crack surfaces (Qu and Li, 1991; Ting, 1992b). If,
in addition, D-IW = 0, the solution for the stress is independent of elastic constants except
PI and P2 in the two materials. Bimaterials for which D-IW i= 0 are called mismatched
bimaterials.

5. GENERALIZED DUNDURS CONSTANTS FOR ANISOTROPIC BIMATERIALS

When A and B ofeqn (21) are inserted into eqn (16)4 and use is made ofeqn (19), L- I

and SL-I can be obtained explicitly (Suo, 1990; Ting, 1992a). We write the result in the
form

where

L- I = uP, SL- I = wJ, (29)

P =~[b
y d dJ J=[Oe ' 1 -lJo ' JJ = -I (30)

(31)
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In the above, Re and 1m stand for the real and imaginary parts, respectively. We have
introduced a positive scaling factor y. It is a function ofp" P2 to be determined later in such
a way that v is an invariant. The elastic constants appear explicitly only in v and w. J is a
constant matrix while P depends on PI and P2 only. P is positive definite because L -I is.
Hence b > 0 and e > 0 as shown in eqn (32). We also have be-cf > O. The inequalities
v> 0, w > 0 (Ting, 1992a) in eqn (31) hold when the strain energy is strictly positive
definite. This means that the strain energy is nonzero whenever the stress or strain is. This
is not the case if the material is incompressible or if an elastic stiffness is infinity because
the strain energy can be zero with a nonzero stress. In that case, the inequalities for v and
win eqn (31) are replaced by v;?: 0, w ;?: O.

From eqns (26) and (29) we have

n = (VIPI +V2P2) = t(v 1 +U2)(PI +p2)+t(VI-V2)(PI -P2)

= t(VI +V2)X

u = (VjPI-V2P2) = t(v I +V2)(PI -P2)+t(UI- V2)(PI +P2)

= t(VI +U2)Y

where

(33)

(34)

(35)

(36)

VI -V2
ex=-­

VI +V2'

X and Y depend on ex, not on [3. Thus

(37)

(38)

They depend on two composite elastic constants ex and [3 in addition to p" P2 of the two
materials. When the two materials are interchanged, ex, [3, n-Iu and n-Iw change signs.

The elastic constants s; 1> S;2 and the eigenvalues p" P2, which appeared in eqns (31)
and (32) in general depend on the choice of coordinate system (x" X2) in the bimaterial.
When the coordinate system is rotated about the xraxis an angle e, s; 1> S;2' PI and P2
referred to the rotated coordinate system change their values. Therefore ex and [3 defined in
eqn (37) are not invariant with eunless v and ware. Sand L are tensors of rank two when
the transformation of the coordinate system is a rotation about the xraxis (Ting, 1982).
Consequently, SL-I is a tensor of rank two and its determinant, which is w2

, is an invariant
with e. Thus w is independent of the choice of coordinate system. It remains to fix the
factor y so that v is also an invariant. Since L -1 = vP and L -I is a tensor, v must be related
to the invariants of L -I. The two principal invariants of L -1 are its determinant and its
trace. From eqns (29)1 and (30)"
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(39)

The coefficients of v2 and v are IPI and tr P, respectively. We present below four choices of
y for which v is an invariant.

(I) Let y = ~(b+e). Then

where

IL-II = hv2
, trL -I = 2v, IPI = h ~ 1,

h
4(be - d2) 4be - 4d2

0< = = ~1.
(b+e)2 4be+(b-e)2

(40)

(41)

Equations (40)2 and (40)1 tell us that v and h are invariant. h = 1 when b = e and d = 0, i.e.
when P is a multiple of the identity matrix I. It arises when PIP2= -lor, by eqn (19),
S22 = s; I and S26 = -S;6'

(II) Let y = Jbe-d2. Then

(42)

and v is an invariant.
If we rewrite eqn (32) as

1 1
b = 2i[(Pl +P2)-(PI +P2)] = 2i[(PI-P2)+(P2-PI)]

1 1
d = 2i[PIP2 -PIP2] = 2i[P2(P1 -P2)+P2(P2 -PI)]

1 1
e = 2i[PIPiPl +P2)-PIP2(PI +P2)] = 2i[PIPipI-P2)+PIP2(P2-PI)],

it can be shown easily that

(43)

Thus, the choice of y in cases (I) and (II) does not give a simple expression in terms of PI'
P2. It has been proved in eqns (73) and (77) ofTing (1982) that

i(pp+ 1) 1
---~

P-P

is an invariant. The equality holds whenp = i. Rewriting eqn (43)2 as

(44)

where
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9 is an invariant. From (43)1 and (44),

Let p', pI! be the real and imaginary parts ofp, respectively. We have

°< fJ... = (P1-pt)(P2-h) = (PT +p~)2_(P'{ -pD
2
~ l'

h (PI-h)(P2-PI) (P'{+p~)2+(p~_p;)2"'"

9 = h when PI = P2' We now offer two more choices ofy.
(III) Let y = -~(PI-P2)(P2-PI)' Then

IL-II=~v2, trL-I=21v, IPI=~~I,

and v is an invariant.
(IV) Let y = -~(Pt-PI)(P2-P2)' Then

t h 2 I 2v h
IL-I=gv, trL-=j{;' IPI=g~l,

491

(45)

(46)

and v is an invariant.
There are, of course, other choices of y for which v is an invariant. When v is an

invariant, P is a tensor. The choice of y in cases (II), (III) and (IV) are identical when
PI = h For the y given by cases (I), (II), or (III), we have from eqns (40), (42) and (45)

(47)

As to the y of case (IV), eqn (46) leads to eqn (47) with the inequality signs in eqn (47)
reversed.

We will show that

JjPi > s > 0, S = w/v,

where s is an invariant. First, it can be verified by a direct calculation that

JPJP = -IPII = PJPJ

for any 2 x 2 symmetric matrix P. The tensor S deduced from eqns (29)1,2 and (49) is

Hence

Chadwick and Ting (1987) have proved for general anisotropic materials that

(48)

(49)
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Therefore eqn (48) holds. When y is given by cases (I), (II) or (III), IPI ~ 1 by eqn (47) and

1> S > o.

For isotropic materials PI = P2 = i, and

(50)

I-v
S'11=~'

where 11 and v are the shear modulus and Poisson ratio, respectively. Hence d = 0 and
b = e = 2. All four choices of y give the same y. We have y = 2, IPI = 1 and

P = I,

Equation (38) simplifies to

I-v
V=~­

11 '

1-2v
w=~.

while eqn (37) takes the form

(51)

Ct = l1iKl + 1)- 111(K2+ 1) fJ = 112(KI -1)- 111(K2 -1)

112(K 1+ 1)+ /[1(/(2 + 1)' l1iKl + 1)+ 111(K2 + 1)
(52)

in which K = 3- 4v. These are Dundurs constants for isotropic bimaterials under plane
strain deformations.

Since v], V2 are positive and nonzero,

-l<Ct<1.

With eqns (48)2 and (37)], fJ of eqn (37)2 can be written as

Thus fJ is linear in Ct when s], S2 are given. Let

Jjp;[ > (s)max~ S, ~ (s)min> 0 (i = 1,2).

In the (Ct, fJ)-plane, the point (Ct,fJ) for all possible combinations of elastic constants in the
bimaterial is located inside the quadrilateral shown in Fig. 1. When y is given by (I), (II),
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r--------
I
1
I
1
I
1
1

-1 I

-(S2)max .
I
I
1- _

---------1
I

(s.) max

-1

IX

Fig. 1. The generalized Dundurs constants (a, fJ) fall inside the quadrilateral for all possible choices
of elastic constants of monoclinic bimaterials. When y is given by (1), (ll) or (Ill), (Sj)max < 1 and
(SZ)max < 1 so that the quadrilateral is bounded by a square of two units as shown. For other choices

of y, (Sj)max and (sz)max can be larger than 1.

or (III) for which IFI ~ 1, the quadrilateral is bounded by a square of two units. For
isotropic materials (assuming that 0 ~ v < 1/2),

1-2v
s=2(1_v)' ~~Si>O (i=1,2),

and the quadrilateral in Fig. 1 becomes a parallelogram (Dundurs, 1969a,b). It should be
noted that for other choices of y for which \PI > 1, (s.)max and (sz)max can be very large and
the quadrilateral in Fig. 1 extends to the outside of the square.

The expressions for the generalized Dundurs constants IX, f3 given in eqn (37) are
identical to those in eqn (5a) of Dundurs (1969a) for isotropic materials except a factor of
four and different notations. The constants v and w have a simple physical interpretation
when the materials are isotropic. For anisotropic materials consider a crack of length two
units located at Xz = 0, - 1 ~ Xl ~ 1 in an infinite monoclinic material. The crack surfaces
are subjected to a uniform normal pressure of q. It can be shown from eqns (19) or (20) of
Ting (l992b) that the displacement at the crack tips Xl = ± 1 are Ul = +wq, Uz = O. Hence
2wq represents the shortening of the crack length. That w is an invariant tells us that the
shortening of the crack length is independent of the orientation of the crack in the material.
As to v, it is related to the determinant or the trace of L -I which often appears in solutions
to anisotropic elasticity problems.

The tensor D is positive definite, assuring us that the tensor X of eqn (36)., is also
positive definite. Equation (49) applies to the tensor X. Hence

and eqn (38) can be written more explicitly as

D-IU = X- I{IXX+(l-IXZ)(P I -Pz)}

= IXI-(l-IXZ)IXI-IJXJ(PI-Pz)

D-IW = 2f3X- IJ = 2f3IXI- IJX.

We also have

SAS 32:3/4-0
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With n- I being positive definite, n-1u = 0 if and only ifU = 0 (or LI= L2). Likewise,
n-1w = 0 if and only if W = O. By eqn (35), W = 0 if and only if 13 = 0 (Ting, 1986; Qu
and Bassani, 1989). Hence n-Iw = 0 and 13 = 0 are equivalent, and 13 # 0 for mismatched
bimaterials.

From eqn (37), a = 13 = 0 when v and w in the two materials are identical. For an
isotropic bimaterial this implies that the two materials are identical. The same cannot be
said of an anisotropic bimaterial. The two materials in an anisotropic bimaterial can be
different even when a = 13 = 0 and L] = L2. They are identical when a = 13 = 0 and Ph P2 in
the two materials are the same.

6. IMPERFECTLY BONDED INTERFACE

For isotropic bimaterials the stress remains dependent on a and 13 even if the interface
is not perfectly bonded (Dundurs, 1967b). We will show that the same is true for anisotropic
bimaterials. The interface may consist of (a) interfacial cracks, (b) sliding interface without
friction, and/or (c) sliding interface with friction. In all three cases the surface traction
remains continuous across the interface so that eqn (24)2 applies, i.e.

(53)

where ljJ = ljJl = ljJ2 at the interface. For case (a), the ljJ in eqn (53) is either a constant or
zero, and no other boundary conditions are required. For cases (b) and (c), let nand m be
the unit vectors normal and tangential to the interface, respectively. The continuity of the
normal component of the displacement at the interface means that

(54)

This is the only equation that introduces elastic constants into the boundary conditions.
The vanishing of the shear stress for case (b) and a relation between the normal stress and
the shear stress due to friction for case (c) involve the stress function ljJ, which is independent
of elastic constants other than PI and P2' Following the derivation of eqn (25), we obtain,
from eqns (53) and (54),

or, by eqns (33)-(35),

(55)

X and Y depend on Ph P2 in the two materials and a. Therefore, the stress depends on the
two generalized Dundurs constants a and 13. The dependence on PI and P2 is understood.
From this result, the stress for collinear cracks (Hwu, 1993) and the Comninou crack
(Comninou, 1977; Comninou and Dundurs, 1979; Wang and Choi, 1983; Wu and Hwang,
1990; Ni and Nemat-Nasser, 1991, 1992) depends on a and 13 only.

Dundurs (1975) has shown that, for isotropic bimaterials, the stress depends on a (not
on 13) if the interface is frictionless and is a straight line. Let the interface make an angle B
with the xI-axis. We have

mT = [cosB,sinB], nT = [-sinB,cosB]

where B is a constant. Since nTJ = mT eqn (55) reduces to
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(56)

use being made of eqn (53)l' The vanishing of the shear stress at the frictionless surface
means that mTlfJ = constant at the interface. The stress function lfJ is determined within an
arbitrary constant. We may choose the arbitrary constant such that mTlfJ vanishes. From
eqn (56), the stress depends on ex (not on f3) for anisotropic bimaterials also.

7. SPECIAL MONOCLINIC BIMATERIALS

We have seen that the two 2 x 2 real tensors n-Iu and n-Iw in eqn (38) simplify to
eqn (51) when the bimaterial is isotropic. There are special anisotropic bimaterials for which
eqn (38) is simplified substantially. We begin with the case with few restrictions on elastic
constants to the cases with more restrictions.

Case 1
Consider the special case in which the tensor L-\ and hence P, is diagonal, i.e.

(57a)

This implies that PI = - Ajh where A> 0 is an arbitrary constant. It was shown in eqn (5.1)
of Ting (l992a) that eqn (57a) arises when

(57b)

Equation (57b) applies to both materials in the bimaterial. It imposes at most two restric­
tions on elastic constants of the bimaterial. Since eqn (57b) is automatically satisfied by
isotropic materials and orthotropic materials with the symmetry planes coinciding with the
coordinate planes (Dongye and Ting, 1989), it imposes no restriction on these materials.
The matrices PI and Pz are diagonal, so is n-Iu. The tensor n-Iw is a product of a
diagonal matrix by the constant matrix J.

Case 2
Let the tensor L in the two materials be proportional, i.e.

Lz = ALlor Ljl = ALl l, (58a)

where A> 0 is an arbitrary constant. From eqn (29)1 this implies that PI and Pz are also
proportional so that we write

(58b)

where 1 = (Vz/VI)A > 0 is an arbitrary constant. Equation (58b) consists of three equations.
It imposes at most two restrictions on elastic constants of the bimaterial but no restrictions
for isotropic bimaterials. Equation (38) reduces to

in which

(59)

, (l-l)+ex(l+ 1)
ex = , "

(A+ 1)+ex(A-1)

, f3
f3= , "

(A+ 1)+ex(A-1)
(60)

n-Iu and n-lw depend on two composite elastic constants & and 13 which are different
from ex and f3 in eqn (37). However &, 13 in eqn (60) and ex, f3 in eqn (37) both reduce to the
ex, f3 in eqn (52) in the isotropic limit.
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A more direct derivation of eqn (59) is to use eqn (58a) and write

Together with eqn (35)1 one obtains eqn (59) where

(61)

This provides an alternate expression to eqn (60).
A special case of eqn (58a) is when A. = 1. By eqns (61)1 and (59)1> & and n-1u vanish.

Case 3
A special case of eqn (58b) is when the eigenvalues of the two materials are identical,

Le.

(62)

Since p\n),p~) are complex, eqn (62) imposes at most four restrictions on elastic constants
of bimaterials, but no restrictions for isotropic bimaterials. It implies that

(63)

and eqn (38) simplifies to

(64)

in which IX, f3 are given by eqn (37).

Case 4
Another special case of eqn (58) is when the elastic stiffnesses of the two materials are

proportional, i.e.

(65)

Since only six elastic constants each in the two materials are employed for plane strain
deformations, eqn (65) imposes at most five restrictions on the twelve elastic constants of
the bimaterial. It imposes only one restriction on isotropic bimaterials, namely, that the
Poisson ratios of the two materials be identical. By eqn (19), the eigenvalues PI> P2 in the
two materials are identical so that eqns (62)-(64) hold with IX, f3 in eqn (64) given by

(66)

8. MONOCLINIC BIMATERIALS WITH IDENTICAL PI AND p,.

We will show in this section that every plane strain solution of an anisotropic elastic
material or bimaterial is applicable to a wider class of materials or bimaterials. This is
because there are elastic constants that are not employed in plane strain solutions. By
reinstating these elastic constants which are arbitrary, one obtains a larger class of materials
to which the original solution remains valid. We use the special materials classified as case
3 in the previous section as an illustration.

If two materials with the symmetry plane at X3 = 0 have the identical eigenvalues PI>
P2' by eqn (19) the ratios
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1 _ s;z
A4 - I

SI1
(67)

in the two materials must be identical. For isotropic materials these ratios are

(68)

so that eqn (67) imposes no restrictions on elastic constants of isotropic bimaterials. From
eqn (3), the elastic stiffnesses of an anisotropic material that can produce plane strain
deformations have the following structure:

CII C l2 C I3 0 0 C I6

Cn C Z3 0 0 C Z6

c= C33 C34 C35 C36
C44 C45 0

C55 0

C66

We have shown only the upper triangle because the matrix C is symmetric. Let Co be the
5 x 5 matrix obtained from C by deleting the third row and the third column of C. The
5 x 5 matrix sij with i i= 3, j i= 3 is the inverse of CO (Ting, 1992a). It can be shown that sij
has the structure

s; I s;z 0 0 S;6

s;z 0 0 S;6

s' = S~4 S45 0

S~5 0

S~6

Therefore the elastic compliances sij obtained from eqn (20) by taking S3j as arbitrary have
the structure

S;I +YT s;z +YIYZ YIY3 YIY4 YIY5 AIS;I+YIY6

A4S; I +y~ YZY3 YzY4 Y2Y5 A3S;I+Y2Y6

yj Y3Y4 Y3Y5 Y3Y6
(69)s=

S~4 +Y~ Y4Y5 Y4Y6

S~5 +y~ Y5Y6

A2S;1-2s;z +y~

where use has been made of eqn (67) and Yi = si3/;;;; are arbitrary real constants with
Y3> O. Except Ai (i = 1,2,3,4) that must be the same for the two materials, all sij and Yi
appearing in eqn (69) can be arbitrary in each of the two materials. Anisotropic elastic
materials represented by eqn (69) may possess no material symmetry planes at all (Cowin
and Mehrabadi, 1987; Cowin, 1989; Ting, 1994a). Nevertheless, the eigenvalues PI and P2
are identical in the two materials as long as Ai (i = l, 2, 3, 4) are identical in the two materials.
The solution for the stress in the bimaterial depends on PI> PZ and the generalized Dundurs
constants 0(, f3 given in eqn (37), provided conditions (ii) and (iii) are satisfied.

If sij in eqn (69) are specialized for isotropic materials and use is made of eqn (68), we
obtain (Ting, 1994a)
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l-v+ci -V+CIC2 clc3 cl64 6165 6166

l-v+c~ 6263 62c4 6265 C266
I 6~ 63c4 6365 6366s=-

2+d2fl. 6465 6466
2+6~ 6566

2+c~

(70)

where 6i = .j2/JYi (i = 1,2, ... ,6) are arbitrary constants with 63> O. Anisotropic materials
represented by eqn (70) may possess no material symmetry. Nevertheless, the plane strain
solutions for these materials are identical to plane strain solutions for isotropic materials.
If the elastic constants of the two materials in the bimaterial are given by eqn (70) with
arbitrary fl., v and Ci' the solution, and hence Dundurs constants, are identical to those for
isotropic bimaterials.

9. PLANE STRESS DEFORMATIONS

When a monoclinic material with the symmetry plane at X 3= 0 is under a plane stress
deformation, the stress-strain laws and the equations of equilibrium are approximately
identical to (1) and (2) for plane strain deformations if we replace Cij by (Ting, 1994b)

*_ Ci3 C3j
Cij- Cij- C .

33

This can be regarded as the 5 x 5 matrix Cij* since the third row and the third column
contain only zero elements. The reduced elastic compliances sij are replaced by s;/, which
is the inverse of Cij* (Ting, 1992a). It can be shown that sij* is the 5 x 5 matrix obtained
from sij by deleting the third row and the third column, i.e.

Indeed, by virtue of the relation CijSjk = Jib it is readily shown that

in which the right-hand side is the identity matrix when the third row and the third column
are deleted. Therefore,

Sij* = sij' i =F 3, j =F 3.

Thus, when sij are replaced by sij, the results obtained in this paper apply to monoclinic
materials and bimaterials under plane stress deformations.

For isotropic materials PI = P2 = i,

I -v
Sll = 2fl.(1+v)' S12 = 2fl.(1+v)'

so that

I
V=~~-

fl.(1 +v)'

I-v
W=

2fl.(1 +v)'

Equation (37) again reduces to eqn (52) where
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3-v
K=--

1+v

for plane stress deformations.

499

10. CONCLUDING REMARKS

We have shown that the parameter W is an invariant. With a proper choice of y, the
parameter v is also an invariant, so are the generalized Dundurs constants a and p. If the
invariance of a and p is of no concern, one may choose y as any constant. The significance
of the invariance of a, pis more than the independence on the choice of coordinate system.
If we rotate material 1 about the xraxis before it is cut to the desired shape and is bonded
to material 2, we would obtain a new anisotropic bimaterial. Since VI and WI are invariant
with the rotation, a and premain the same for the new bimaterial. Thus, when a and pare
invariant, the generalized Dundurs constants do not depend on the individual orientation
of the two materials in the bimaterial. In particular, a = p = 0 if the two materials are
identical but have different orientations.
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